
Composable Linear Solvers for Multiphysics

Jed Brown˚, Matthew G. Knepley:, David A. May;, Lois Curfman McInnes˚, Barry Smith˚

˚Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL USA
[jedbrown,mcinnes,bsmith]@mcs.anl.gov

:Computation Institute
University of Chicago

Chicago, IL USA
knepley@ci.uchicago.edu

;Department of Earth Sciences
ETH Zürich

Zürich, Switzerland
dave.may@erdw.ethz.ch

Abstract—The Portable, Extensible Toolkit for Scientific
computing (PETSc), which focuses on the scalable solution
of problems based on partial differential equations, now
incorporates new components that allow full composability
of solvers for multiphysics and multilevel methods. Through
strong encapsulation, we achieve arbitrary, dynamic com-
position of hierarchical methods for coupled problems and
allow customization of all components in composite solvers.
For example, we support block decompositions with nested
multigrid as well as multigrid on the fully coupled system with
block-decomposed smoothers. This paper provides an overview
of PETSc’s new multiphysics capabilities, which have been used
in parallel applications including lithosphere dynamics, sub-
duction and mantle convection, ice sheet dynamics, subsurface
reactive flow, fusion, mesoscale materials modeling, and power
networks.

Keywords-multiphysics, hierarchical solvers, composable
solvers, Schur complement

I. INTRODUCTION

Multiphysics applications are of increasing interest as
computational science communities strive to address broad
questions about complex physical and engineered sys-
tems characterized by multiple, interacting physical pro-
cesses that have traditionally been considered separately [1].
The Portable, Extensible Toolkit for Scientific computing
(PETSc) [2], which focuses on the solution of large-scale
problems based on partial differential equations (PDEs),
includes several relatively recent components that have
substantially improved composability for multiphysics and
multilevel methods. The strong encapsulation of the PETSc
design facilitates runtime composition of hierarchical meth-
ods for coupled problems without sacrificing the ability
to customize certain components [3], [4], [5]. Applications

using these multiphysics features include lithosphere dynam-
ics [6], subduction and mantle convection [7], [8], [9], [10],
[11], ice sheet dynamics [12], [13], [14], subsurface reactive
flow [15], tokamak fusion [16], [17], mesoscale materials
modeling [18], and power networks [19], [20].

This paper provides an overview of these multiphysics
capabilities, along with illustrative examples. We emphasize
our software strategy that enables users to experiment with
these composable algorithms on parallel architectures. We
refer readers to indicated references for discussion of per-
formance for particular applications. Software with related
capabilities includes MOOSE [21], the Teko package of
Trilinos [22], and FEniCS [23]. PETSc also includes new
capabilities for multiphysics time integration and nonlinear
solvers [24], but these are outside the scope of this paper.

The remainder of this document is organized as follows.
Section II introduces coupled problems and the concept
of solver composition by relaxation and factorization. Sec-
tion III introduces the DM object, which PETSc uses to
define suitable decompositions and to provide the algebraic
solvers with any necessary information that might depend on
discretization, geometry, and physics. Section IV introduces
the FieldSplit preconditioner and Nest matrix format,
which implement relaxation and factorization splittings with
efficient and flexible storage. Section V demonstrates this
composability for applications in geodynamics, ice sheet
modeling, and materials science. Section VI discusses con-
clusions and directions of future work.

II. COMPOSITION OF LINEAR SOLVERS

We begin by introducing notation and the various ways
that solvers for individual physics components may be com-

bined to compute efficient solvers for the coupled physics.
The algebraic system obtained by the discretization of a
time-independent nonlinear PDE dependent on p types of
variables (physical quantities) can be written as

¨

˚

˚

˚

˝

F1pu1, u2, . . . , upq
F2pu1, u2, . . . , upq

...
Fppu1, u2, . . . , upq

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

0
0
...
0

˛

‹

‹

‹

‚

.

We make no particular assumptions about the relative sizes
of the subvectors ui. In addition, the subvectors themselves
may consist of two or more subvectors related to different
physical quantities; to avoid the textual complexity, we do
not represent that case here. The Jacobian of the nonlinear
function described above may be expressed in block form
as

¨

˚

˚

˚

˝

J11 J12 ¨ ¨ ¨ J1p

J21 J22 ¨ ¨ ¨ J2p

...
...

. . .
...

Jp1 Jp2 ¨ ¨ ¨ Jpp

˛

‹

‹

‹

‚

.

Newton’s method for solving F puq “ 0 is then simply
un`1 “ un ´ λĴ´1punqF punq, where Ĵ´1punq represents
some approximate linear solve using some approximation
of the true Jacobian. PETSc has a full suite of sophisticated
Newton solvers, including line search techniques to compute
λ, convergence determiners to stop the linear solver at
an appropriate accuracy, sophisticated code to apply the
Jacobian without explicitly forming it, colorings to compute
the Jacobian efficiently [25], and procedures to allow lag-
ging the computation of the (approximate) Jacobian and/or
preconditioner [26]. However, none of those capabilities will
be discussed here; this paper focuses on efficient techniques
for approximate linear solution using preconditioned Krylov
methods for problems arising in multiphysics simulations.

We begin the discussion by assuming that the entire
Jacobian has been computed and is stored by using some
sparse matrix representation. Later we will discuss how the
computation can be optimized by removing the need to com-
pute all of the Jacobian explicitly. Note that Jii represents
coupling within a given physics submodel, while Jij rep-
resents coupling between two different physics submodels
(for example, between a Stokes-like problem and thermal
transport, as discussed in Section V). The simple block
Jacobi preconditioner that involves only separate solves for
each physics is given by

¨

˚

˚

˚

˝

Ĵ´1
11 0 ¨ ¨ ¨ 0

0 Ĵ´1
22 ¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨ Ĵ´1
pp

˛

‹

‹

‹

‚

.

When the values from the previously computed physics are
used before solving for the next physics, the result is block

Gauss-Seidel, as given by
¨

˚

˚

˚

˝

Ĵ11 0 ¨ ¨ ¨ 0

J21 Ĵ22 ¨ ¨ ¨ 0
...

...
. . .

...
Jp1 Jp2 ¨ ¨ ¨ Ĵpp

˛

‹

‹

‹

‚

´1

.

Note that applying block Gauss-Seidel requires applying
Jij for iąj, while applying block Jacobi requires no off-
diagonal Jacobian blocks. If one uses a symmetric sweep of
block Gauss-Seidel, then one must be able to apply all off-
diagonal blocks of Jij , i‰j. If the off-diagonal blocks have
not been computed and stored, their action on a vector may
be obtained by differencing Fipu1, . . . , uj , . . . , upq over the
uj variables. This requires computing the function Fip. . . q
associated with the ith physics without also computing all the
other functions. An alternative that is computationally ex-
pensive, but useful for testing algorithms, is to difference the
entire function and extract Fi from the result. These features,
combined with user-defined matrix-free computation of off-
diagonal blocks, allow block methods to be implemented by
using only partial assembly of the Jacobian, in which some
blocks are explicitly computed and stored while others are
not. The MOOSE package [21] is built on this principle.

We describe this solution process in more detail in order to
provide a foundation for its subsequent extension. When the
Jacobian is symmetric positive definite, the solution of any
single block represents the projection (and hence correction)
of the current error (in the J-norm) onto the subspace rep-
resented by that block’s degrees of freedom. These concepts
are well explained in the domain decomposition literature
[27]. If the subspaces represented by the various physics
are J-orthogonal, then the off-diagonal blocks of J are
zero and the iteration will converge in one iteration. The
“strength” of the coupling in the off-diagonal blocks is a
measure of the lack of orthogonality between the various
subspaces. If one proceeds by orthogonalizing the second
subspace with respect to the first, the third with respect to
the first and second, and so on, then one obtains a block
Cholesky factorization. To improve the convergence rate of
block iterative methods, one then desires a preconditioner
that works with subspaces that are more orthogonal than the
original subspaces. For simplicity, we consider the block
2 ˆ 2 case (the general case can be handled by recursion).
The block LU factorization can be written as

J “ LDU “

ˆ

I 0
J21J

´1
11 I

˙ˆ

J11 0
0 S

˙ˆ

I J´1
11 J12

0 I

˙

,

where S “ J22´J21J
´1
11 J12. The inverse of the factorization

can be written as

J´1 “ U´1pLDq´1 “

ˆ

I ´J´1
11 J12

0 I

˙ˆ

J11 0
J21 S

˙´1

“ pDUq´1L´1 “

ˆ

J11 J12

0 S

˙´1 ˆ
I 0

´J21J
´1
11 I

˙

,

each of which requires two solves with J11 and one solve
with S (the application of which embeds a solve with
J11). This is known as Schur complement reduction and is
generally robust provided good preconditioners for J11 and
S are available. In practice, one commonly iterates in the full
space; uses only the lower pLDq´1, upper pDUq´1, or diag-
onal D´1 part of the factorization; and solves only approx-
imately with S. These shortcuts are justified by observing
that the block triangular variants produced preconditioned
operators with all eigenvalues equal to 1 and with minimal
polynomial of degree 2; thus GMRES with exact solves for
J11 and S would converge in two iterations [28], [29]. In
practice, when the solves with J11 and S are approximate,
the clustering of eigenvalues is usually more helpful to
GMRES convergence than is the degradation because of
non-normality introduced by the block triangular form. A
similar result holds for a block diagonal preconditioner,
which is popular for symmetric problems because it can be
used with MINRES and has only three eigenvalues when
applied exactly. These full-space iterations are often more
efficient than Schur complement reduction but are more
sensitive to relative scaling of each block.

The preconditioner for J11 utilizes standard components,
but S is usually dense, thus requiring extra attention. Schur
complement preconditioners can be obtained in a variety of
ways, including several variants of approximate commutator
arguments [30], [31], [32], [33], [34], Green’s functions [35],
and H-matrices [36], [37]. We demonstrate the least squares
commutator preconditioner in Section V.

Rather than splitting the matrix into large blocks and
forming a preconditioner from solvers (for example, multi-
grid) on each block, one can perform multigrid on the entire
system, basing the smoother on solves coming from the tiny
blocks coupling the degrees of freedom at a single point (or
small number of points). This approach is also handled in
PETSc, but we will not elaborate on it here.

III. THE PETSC DM OBJECT

Solvers based purely on provided matrix entries are lim-
ited in their ability to perform well since one cannot take
advantage of geometric or modeling information. Hence, a
solver framework that allows access to this information is
vital. The difficulty is creating a flexible, hierarchical way
to provide this information that is nonintrusive yet powerful.
One unique feature of PETSc is the DM abstract class, which
provides information to the algebraic solvers regarding the
mesh and physics but does not impose constraints on their
management. We note that DM is not a mesh management
class and does not provide an interface to low-level mesh
details; rather, DM provides an interface for accessing infor-
mation relevant to and needed by the solver.

Before introducing the DM class, we introduce the index
set, which is an abstraction of a parallel set of integers

used for indexing into array-type objects. Several imple-
mentations are available, and more can be added easily.
The first stores on each process an array of integers, each
representing a single location; the second stores on each
process an array of integers, each representing blocks of
locations. Both implemenations are rather heavyweight but
provide the most flexibility in indicating entries. The third
representation is stride access, indicated by a first entry,
the size between entries (the stride), and the number of
entries; this representation is similar to MATLAB notation,
for example, [3:2:10]. A subfield of a vector can then be
represented by an index set that represents the indices of the
subfield. A subsubfield can similarly be represented by an
index set applied to the subfield.

What functionality does a DM need to provide to the
algebraic solvers? These are represented as methods in the
DM class in PETSc with capabilities to create

‚ a parallel global vector that can contain an entire field
(PDE solution, for example);

‚ a local, ghosted vector for local function evaluations;
‚ a parallel sparse matrix that incorporates all or some of

the coupling inherent in the discretization;
‚ a “refined-mesh” version of the given DM;
‚ a “coarsened-mesh” version of the given DM;
‚ a restriction of the DM to a subset of the physics (subset

of the fields) or a subset of the domain;
‚ operators that interpolate, restrict, or inject between

fields defined by two different DMs;
‚ an operator that maps between the global representation

of a field and its local representation; and
‚ a way of naming and representing subfields of the

global field by using index sets.
Using these operations, the PETSc linear and nonlinear

solver infrastructure can automatically generate all work
vectors, sparse matrices, and transfer operators needed by the
multigrid solvers and composite (block) solvers. In addition,
since DMs can recursively return DMs associated with subsets
of physics, this process can be done in a hierarchical manner,
with block solvers being embedded in multigrid solvers that
are in turn embedded in multigrid solvers, and so on.

To make the management of user-provided code as simple
as possible, we provide additional methods in DM that
users implement to form initial guesses, compute nonlinear
functions, and compute Jacobians. These enable an inner
solver (which has access to an inner DM), for example, to
explicitly compute a needed piece of the Jacobian, while
leaving the entire large Jacobian unassembled.

IV. FIELDSPLIT PRECONDITIONER

PETSc has a wide variety of composable linear solvers.
Here we focus on one important class of precondition-
ers in PETSc, FieldSplit, which is designed for the
flexible, hierarchical construction of block solvers. The
FieldSplit preconditioner solves linear block systems

using either block relaxation or block factorization (Schur
complement approaches). Arbitrary p ˆ p block systems
are supported, with the user specifying only index sets
to identify each block (which may overlap). These index
sets may be provided in the DM or passed directly to the
FieldSplit preconditioner. Any algebraic solver can be
used in each block; geometric multigrid may also be used
if coarsening information is provided through the DM object
or sub-DM objects representing fewer of the fields. As usual
in PETSc, the FieldSplit preconditioner can be nested
inside other preconditioners, such as multigrid or a higher-
level FieldSplit, with construction of the hierarchy and
other algorithmic choices as runtime options.

Fundamental in FieldSplit preconditioning is the con-
cept of extracting submatrices from a global matrix acting
on the coupled system. If a monolithic matrix format is
used at the top level, the submatrix must be extracted and
copied, a process that may involve excessive communication
and increase memory requirements. The Nest matrix format
alleviates this overhead by storing the submatrix associated
with each physics independently. Although Nest is a more
efficient format for FieldSplit, however, it cannot be used
with certain solution methods, such as a sparse direct solver.
To avoid an application depending on a specific matrix
format (which would limit the available algorithms), PETSc
provides a function that returns a generalized matrix view
that is capable of assembly with the API for block problems
regardless of the type of the larger matrix. When the
larger matrix uses the Nest format, the submatrix is simply
returned. When the larger matrix uses a monolithic format,
a lightweight proxy is returned in the new matrix object.
This proxy matrix is not fully functional, but it implements
the assembly routines. If multiple levels of nesting are used,
index translation in the proxy is flattened so that only one
index translation can reach the top level. Since the matrix
format can be chosen at runtime, a multiphysics application
can assemble the diagonal blocks of a Jacobian in Nest or
any monolithic format simply by calling the single-physics
assembly routines. The off-diagonal blocks can be assembled
with no global knowledge, only “local” indexing for the two
physics submodels that the block couples.

To make this process concrete, we consider the case
of three fields and the PETSc runtime options for various
algorithms; in all cases the user code remains the same.

‚ Direct solve on the entire system:
-mat_type aij -ksp_type preonly -pc_type lu

‚ Coupled multigrid (without a Krylov accelerator):
-mat_type aij -ksp_type preonly -pc_type mg
-mg_levels_pc_type sor
-mg_levels_ksp_type richardson

‚ Jacobian-free (matrix-free) Newton-Krylov with one V-
cycle of multigrid on the first two blocks and Jacobi on
the third block:
-mat_type nest -snes_mf_operator
-ksp_type gmres -pc_type fieldsplit

-fieldsplit_0_pc_type mg
-fieldsplit_0_ksp_type preonly
-fieldsplit_0_mg_levels_pc_type sor
-fieldsplit_0_mg_levels_ksp_type preonly
-fieldsplit_1_pc_type mg
-fieldsplit_1_ksp_type preonly
-fieldsplit_1_mg_levels_pc_type sor
-fieldsplit_1_mg_levels_ksp_type preonly
-fieldsplit_2_pc_type jacobi
-fieldsplit_2_ksp_type preonly

‚ A Schur complement-based preconditioner that approx-
imately eliminates the first two fields by using GMRES
preconditioned by one V-cycle of uncoupled multigrid
applied to each field.
-mat_type aij -ksp_type gmres -pc_type fieldsplit
-pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-pc_fieldsplit_schur_precondition self
-pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2
-fieldsplit_0_ksp_type gmres
-fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_fieldsplit_0_pc_type mg
-fieldsplit_0_fieldsplit_1_pc_type mg
-fieldsplit_0_fieldsplit_0_ksp_type preonly
-fieldsplit_0_fieldsplit_1_ksp_type gmres

We note the following conventions for PETSc run-
time options. Each linear (sub)solver has two parts: the
preconditioner (indicated by -pc_type) and the Krylov
accelerator (indicated by -ksp_type). A single appli-
cation of the preconditioner is denoted by -ksp_type

preonly, while -ksp_type richardson denotes ap-
plying the preconditioner until a sufficient reduction
in the residual norm or a certain number of itera-
tions is achieved. For example, -ksp_type richardson

-pc_type sor -ksp_max_it 3 indicates three iterations
of SOR. The solvers for subproblems are prefixed to dis-
tinguish them. For example, -fieldsplit_0_ksp_type

preonly indicates that no Krylov accelerator should
be used for the first FieldSplit subsolve, while
-fieldsplit_0_mg_levels_pc_type sor indicates the
smoother for the levels of multigrid used in the first block
solver. We note that the last example demonstrates the
recursive use of the fieldsplit preconditioner.

V. NUMERICAL EXAMPLES

To demonstrate the flexibility offered by the simple
definition of blocks in PETSc, we present problems in
geodynamics, ice dynamics, and materials science. Only the
operators themselves are defined in the application code,
along with either a DM definition, a block size, or explicit
marking of index sets. Applications make a single call to the
PETSc linear (or nonlinear) solver regardless of the solution
method or matrix format that they will use. We dynamically
construct the hierarchical solver and preconditioner from
the command line, allowing a wide range of methods to
be easily compared. This approach removes the need for
application scientists to explicitly select, design, and code
a particular solver. Rather, they specify only the physical
division between fields in the problem, through index sets

given to the DM; an appropriate solver can be constructed
at runtime. The indicated references discuss performance of
various algorithmic choices, which is beyond the scope of
this paper.

A. Geodynamics: Variable-viscosity Stokes

Our first example solves a variable coefficient Stokes
problem from geodynamics for velocity u and pressure p,

´∇ ¨ pηDu´ p1q ´ ρg “ 0

∇ ¨ u “ 0,

where ρg is the gravitational body force, η is the effective
viscosity (which is frequently discontinuous with jumps of
several orders of magnitude), and D is the symmetric gradi-
ent, that is, Du “ 1

2

`

∇u` p∇uqT
˘

. When discretized by
using a mixed finite-element method from Underworld [38],
the algebraic equations have the block form

ˆ

Juu JT
pu

Jpu 0

˙

,

where Juu is symmetric positive definite and Jpu is the
discrete divergence operator. Following an effective solu-
tion strategy from [8], we use a flexible GMRES method
with upper triangular factorization, where inner solves with
Juu are performed inexactly. Our preconditioner for S “
´JpuJ

´1
uu J

T
pu is the least squares commutator (LSC),

Ŝ´1
LSC “ L´1

p JpuM
´1
d JuuM

´1
d JT

puL
´1
p ,

where Lp “ JpuM
´1
d JT

pu is a discrete scaled Laplacian with
Neumann boundary conditions, and the scaling matrix Md “

diagpJuuq. Since this problem has full Dirichlet boundary
conditions, the constant pressure mode is in the null space of
S and Lp, so we remove it by projecting the Krylov iterates
to have zero mean. The preconditioner ŜLSC is provided
by PCLSC, which allows the user to provide Lp and Md

(e.g,. by rediscretization) but constructs them algebraically
otherwise. Our code uses only the assembled operators Juu,
Jpu, and JT

pu; optimizes storage by selecting the Nest matrix
type; and configures the solver entirely with command line
options. The outer flexible GMRES [39] method, scaling,
and upper-triangular preconditioner structure are configured
as follows:
-ksp_type fgmres -ksp_diagonal_scale
-ksp_rtol 1.0e-10
-pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper

with an iterative solve for Juu
-fieldsplit_velocity_ksp_type cg
-fieldsplit_velocity_ksp_rtol 1.0e-6
-fieldsplit_velocity_pc_type bjacobi
-fieldsplit_velocity_sub_pc_type cholesky
-fieldsplit_velocity_sub_pc_factor_mat_ordering_type
nd

an iterative solve for S
-fieldsplit_pressure_ksp_type fgmres
-fieldsplit_pressure_ksp_constant_null_space

-fieldsplit_pressure_ksp_monitor_short
-fieldsplit_pressure_pc_type lsc

and a low-accuracy solve with the scaled Laplacian Lp

appearing in the LSC preconditioner.
-fieldsplit_pressure_lsc_ksp_type cg
-fieldsplit_pressure_lsc_ksp_rtol 1.0e-2
-fieldsplit_pressure_lsc_ksp_constant_null_space
-fieldsplit_pressure_lsc_ksp_converged_reason
-fieldsplit_pressure_lsc_pc_type bjacobi
-fieldsplit_pressure_lsc_sub_pc_type icc

For a different discretization in which geometric inter-
polants are available, we choose geometric multigrid on the
coupled problem, Galerkin coarse grid operators so that the
problem does not need to be rediscretized, and a simpler
field splitting (based on a scaled pressure “mass” matrix)
used as a smoother on each level. The following options
set up multigrid, the (multiplicative) splitting of interlaced
variables into velocity and pressure parts, and the velocity
part of the smoother (using default values for the pressure
smoother).
-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor

The relaxation factor for the smoother on each level is tuned
by estimating the largest eigenvalue of the preconditioned
operator and optimizing a first-order Chebychev polynomial
for the interval r0.2λmax, 1.1λmaxs, which is achieved by
the following options.
-mg_levels_ksp_type chebychev
-mg_levels_ksp_max_it 1
-mg_levels_ksp_chebychev_estimate_eigenvalues

0,0.2,0,1.1

Note that the fieldsplit division can also be accomplished for
mixed discretizations by looking for the saddle point (null
block in the matrix).
-mg_levels_pc_fieldsplit_detect_saddle_point

These solvers are discussed in the context of mantle con-
vection in [10], [11].

B. Ice sheet dynamics: Polythermal ice flow

Nested fieldsplits have proved useful for several prob-
lems that couple variable-viscosity Stokes problems to other
physics, including Lagrangian-free surfaces, viscoplasticity,
and viscoelasticity. We consider a non-Boussinesq formula-
tion of polythermal ice flow, which solves for momentum
density ρu, pressure p, and total energy density E,

pρuqt `∇ ¨
`

ρub u´ ηDui ` p1
˘

´ ρg “ 0

ρt `∇ ¨ ρu “ 0

Et `∇ ¨
`

pE ` pqu´ kT∇T ´ kω∇ω
˘

´ηDui :Dui ´ ρu ¨ g “ 0,

where T is temperature, ω is the volumetric melt fraction
(porosity), and ui is the velocity of the ice (not including
the velocity of the melt). These terms are computed from
pρu, p, Eq by using the equation of state and additional

nonlinear constitutive relations defining viscosity η, thermal
diffusivity kT , and melt diffusivity kω; see [40] for details.
Similar models are used for other viscous, porous-media
problems. The Jacobian has the block form

J “

¨

˝

Juu Jup JuE
Jpu 0 0
JEu JEp JEE

˛

‚,

representing the Stokes-like problem coupled to thermal
transport. Although JuE represents important nonlinear cou-
pling, it contributes little linear stiffness relative to the lower-
triangular terms JEu and JEp. Therefore, we choose lower-
triangular preconditioning,

P´1 “

¨

˝

ˆ

Juu Jup
Jpu 0

˙ ˆ

0
0

˙

`

JEu JEp

˘

JEE

˛

‚

´1

,

which, if applied exactly, ensures that the preconditioned
operator has minimal polynomial of degree 2. The lower-
triangular form is further from normal, which degrades GM-
RES convergence despite well-clustered eigenvalues [41],
[42]. We solve the Stokes block using a block triangular
preconditioner with a scaled mass matrix preconditioner
for the Schur complement. Our 3D polythermal ice flow
solver uses high-order, mixed finite-element methods on
unstructured hexahedral meshes, where all high-order op-
erators are applied matrix-free and only necessary low-
order operators are assembled. The matrix-free methods
have better asymptotics with increasing element order and
use much less memory than assembled methods [43], [40].
First we create the top-level splitting and forward the (full
accuracy) matrix-free diagonal blocks to the inner split.
-pc_type fieldsplit
-pc_fieldsplit_type multiplicative
-pc_fieldsplit_real_diagonal

Then we configure the solver for the inner Stokes problem
to use GCR [44].
-fieldsplit_s_ksp_type gcr
-fieldsplit_s_ksp_rtol 1e-1
-fieldsplit_s_ksp_monitor_vht
-fieldsplit_s_ksp_monitor_singular_value
-fieldsplit_s_pc_type fieldsplit
-fieldsplit_s_pc_fieldsplit_type schur
-fieldsplit_s_pc_fieldsplit_real_diagonal
-fieldsplit_s_pc_fieldsplit_schur_factorization_type
lower

-fieldsplit_s_fieldsplit_u_ksp_type gmres
-fieldsplit_s_fieldsplit_u_ksp_max_it 10
-fieldsplit_s_fieldsplit_u_pc_type asm
-fieldsplit_s_fieldsplit_u_sub_pc_type ilu
-fieldsplit_s_fieldsplit_u_sub_pc_factor_levels 1
-fieldsplit_s_fieldsplit_u_ksp_converged_reason
-fieldsplit_s_fieldsplit_p_ksp_type preonly
-fieldsplit_s_fieldsplit_p_ksp_max_it 1
-fieldsplit_s_fieldsplit_p_pc_type jacobi

Finally, we configure the solver for energy transport.
-fieldsplit_e_ksp_type gmres
-fieldsplit_e_ksp_converged_reason
-fieldsplit_e_pc_type asm
-fieldsplit_e_sub_pc_type ilu
-fieldsplit_e_sub_pc_factor_levels 2

This flexible configuration allows shifting work into the
preconditioner to avoid the need for GMRES restarts and to
enable parts of the problem with different spectral structure
to be treated independently. In practice, the outermost linear
solve converges in about three Krylov iterations, with most
work occurring in the viscous part of the Stokes problem
(prefixed by -fieldsplit_s_fieldsplit_u_) and the
energy solve (prefixed by -fieldsplit_e_). We have
found this configuration to be significantly more robust in
realistic parameter ranges than is the 3ˆ 3 block precondi-
tioner used by [45] for Boussinesq buoyancy-driven flows,

P´1
1 “

¨

˝

Juu Jup JuE
0 Bpp 0
0 0 JEE

˛

‚

´1

,

where Bpp is a scaled pressure mass matrix (or, for non-
vanishing Reynolds number, “pressure convection diffusion”
or “least squares commutator” preconditioners).

C. Materials science: Phase field models
Our final example solves the Allen-Cahn variational in-

equalities that arise in phase field models in the mesoscale
modeling of irradiated materials [18]. We consider isother-
mal, multicomponent phase transitions in a polygonal do-
main Ω Ă Rd, d “ 1, 2, 3. Each phase at a particular
point px, tq P Q “ Ω ˆ r0, T0s, T0 ą 0, is represented by
the value of a component uipx, tq of the order parameter
u “ pu1, ..., uN q

T . In practical applications the components
ui may represent concentrations or volume fractions of
different phases in the system; that is, if ui “ 0, then phase
i is absent in that region, while if ui “ 1, only phase i
is present in that region. Since the concentrations are non-
negative and sum to unity, the order parameter satisfies the
constraints

upx, tq P G “ tv P Rd|vi ě 0,
N
ÿ

i“1

vi “ 1u, @px, tq P Q.

The closed convex set G Ă RN is often called Gibbs
simplex. The Ginsburg-Landau total free energy of our
system is assumed to take the form

Epuq “

ż

Ω

ε

2

N
ÿ

i“1

|∇ui|2 `
1

ε
Ψpuqdx, ε ą 0.

The quadratic term describes the interfacial energy, and Ψ
is a free energy that gives rise to phase separation. We focus
on a multiphase version of the logrithmic free energy with
the classical obstacle potential,

Ψ0puq “ θ
N
ÿ

i“1

ui lnpuiq ` θc
N

2

N
ÿ

i“1

uip1´ uiq, u P G,

where θ is the absolute temperature and θc is the critical
temperature. The vector-valued Allen-Cahn equation

εut “ ε∆u´
1

ε
P∇uΨpuq

is the projected L2´gradient flow of the total free energy
E. The orthogonal projection P : RN Ñ Σ0 “ tv P

RN |
ř

i vi “ 0u, defined by

Pv “ v ´
1

N
pv ¨ 1q1,

accounts for the fact that the values upx, tq P G Ă Σ “ tv P
RN |

ř

i vi “ 1u must vary only on the affine hyperplane Σ.
We also prescribe suitable initial conditions upx, 0q P G on
Ω and impose periodic boundary conditions.

The system can be written as the saddle-point matrix,
¨

˚

˚

˝

J 0 0 ´I
0 J 0 ´I
0 0 J ´I
´I ´I ´I 0

˛

‹

‹

‚

.

After the reduced-space active-set method is applied, the
reduced system matrix has the same structure but with
certain rows or columns of the matrices removed (those
associated with actively constrained variables).

The options below use the block Schur complement
preconditioner and the hypre [46] BoomerAMG algebraic
multigrid preconditioner on the first blocks.
-ksp_type fgmres -pc_type fieldsplit
-pc_fieldsplit_detect_saddle_point
-pc_fieldsplit_type schur
-pc_fieldsplit_schur_precondition self
-fieldsplit_0_ksp_type preonly
-fieldsplit_0_pc_type hypre
-fieldsplit_1_ksp_type fgmres
-fieldsplit_1_pc_type lsc

The following commands invert the roles of the block pre-
conditioner and multigrid and hence run (geometric) multi-
grid on the entire Stokes problem using a Schur complement
FieldSplit preconditioner as the smoother on each level:
-ksp_type fgmres -pc_type mg -pc_mg_galerkin
-mg_levels_ksp_type fgmres
-mg_levels_ksp_max_it 2
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition user
-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
-mg_levels_fieldsplit_ksp_max_it 5
-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

VI. CONCLUSION

This paper has demonstrated the power of new PETSc
infrastructure called FieldSplit for constructing multi-
physics solvers. Its hierarchical design and interaction with
the PETSc DM class enable the runtime selection of a variety
of nested block and multigrid preconditioners. Moreover,
users can develop custom strategies that exploit operator-
specific knowledge. We are incorporating new features
to leverage emerging extreme-scale architectures, as well
as complementary capabilities for multiphysics nonlinear
solvers and time integration.

ACKNOWLEDGMENT

This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under Contract DE-AC02-06CH11357.

REFERENCES

[1] D. E. Keyes, L. C. McInnes, C. Woodward, W. D. Gropp,
E. Myra, M. Pernice, J. Bell, J. Brown, A. Clo, J. Con-
nors, E. Constantinescu, D. Estep, K. Evans, C. Farhat,
A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao,
K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee,
A. Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt,
M. Mehl, R. Pawlowski, A. Peters, D. Reynolds, B. Riviere,
U. Rüde, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard,
A. Siegel, B. Smith, X. Tang, C. Wilson, and B. Wohlmuth,
“Multiphysics Simulations: Challenges and Opportunities,”
Argonne National Laboratory, Tech. Rep. ANL/MCS-TM-
321, Dec 2011, Report of workshop sponsored by the Institute
for Computing in Science (ICiS), Park City, Utah, July 30 -
August 6, 2011.

[2] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith,
and H. Zhang, “PETSc users manual,” Argonne National
Laboratory, Tech. Rep. ANL-95/11 - Revision 3.3, 2012.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith,
CRPC Handbook of Parallel Computing. Morgan Kaufmann
Publishers, 2002, ch. Software for the Scalable Solution of
PDEs.

[4] ——, “Efficient management of parallelism in object oriented
numerical software libraries,” in Modern Software Tools in
Scientific Computing, E. Arge, A. M. Bruaset, and H. P.
Langtangen, Eds. Birkhauser Press, 1997, pp. 163–202.

[5] B. Smith, Encyclopedia of Parallel Computing. Springer,
2011, ch. PETSc, the Portable, Extensible Toolkit for Scien-
tific computing.

[6] B. Aagaard, S. Kientz, M. G. Knepley, S. Somala, L. Strand,
and C. Williams, “Pylith user manual version 1.6.1,” 2011.

[7] R. F. Katz, M. G. Knepley, B. Smith, M. Spiegelman, and
E. Coon, “Numerical simulation of geodynamic processes
with the Portable Extensible Toolkit for Scientific Compu-
tation,” Phys. Earth Planet. In., vol. 163, pp. 52–68, 2007.

[8] D. A. May and L. Moresi, “Preconditioned iterative methods
for Stokes flow problems arising in computational geodynam-
ics,” Physics of the Earth and Planetary Interiors, vol. 171,
no. 1-4, pp. 33–47, 2008, Recent Advances in Computational
Geodynamics: Theory, Numerics and Applications.

[9] R. F. Katz, M. Spiegelman, and B. Holtzman, “The dynamics
of melt and shear localization in partially molten aggregates,”
Nature, vol. 442, pp. 676–679, August 2006.

[10] S. Weatherley and R. Katz, “Melting and channelized mag-
matic flow in chemically heterogeneous, upwelling mantle,”
Geochem. Geophys. Geosys., vol. 13, no. 1, p. Q0AC18, 2012.

[11] R. Katz and S. Weatherley, “Consequences of mantle hetero-
geneity for melt extraction at mid-ocean ridges,” Earth Planet.
Sci. Lett., vol. 335-336, pp. 226–237, 2012.

[12] R. Katz and M. Worster, “The stability of ice-sheet grounding
lines,” Proc. Roy. Soc. A, vol. 466, pp. 1597–1620, 2010.

[13] T. Tautges et al., “SISIPHUS: Scalable ice-sheet solvers
and infrastructure for petascale, high-resolution, unstructured
simulations,” http://trac.mcs.anl.gov/projects/sisiphus/wiki.

http://trac.mcs.anl.gov/projects/sisiphus/wiki

[14] J. Brown, B. Smith, and A. Ahmadia, “Achieving textbook
multigrid efficiency for hydrostatic ice sheet flow,” 2012,
submitted to SIAM Journal on Scientific Computing.

[15] P. Lichtner et al., “PFLOTRAN project,” http://ees.lanl.gov/
pflotran/.

[16] A. Hakim, J. Cary, J. Candy, J. Cobb, R. Cohen, T. Ep-
perly, D. Estep, S. Krasheninnikov, A. Malony, D. McCune,
L. McInnes, A. Pankin, S. B. J. Carlsson, M. Fahey, R. Groeb-
ner, S. Kruger, M. Miah, A. Pletzer, S. Shasharina, S. Vad-
lamani, D. Wade-Stein, T. Rognlein, A. Morris, S. Shende,
G. Hammett, K. Indareshkumar, A. Pigarov, and H. Zhang,
“Coupled whole device simulations of plasma transport in
tokamaks with the FACETS code,” in Proceedings of SciDAC
2010 Conference, 2010.

[17] M. McCourt, T. D. Rognlien, L. C. McInnes, and H. Zhang,
“Improving parallel scalability for edge plasma transport
simulations with neutral gas species,” in Proceedings of
the Twenty Second International Conference on Numerical
Simulations of Plasmas, Sept. 7-9, 2011, Long Branch, NJ (to
appear), 2012, also available as preprint ANL/MCS-P2018-
0112.

[18] L. Wang, J. Lee, M. Anitesu, A. E. Azab, L. C. McInnes,
T. Munson, and B. Smith, “A differential variational inequal-
ity approach for the simulation of heterogeneous materials,”
in Proceedings of SciDAC 2011 Conference, 2011.

[19] S. Abhyankar, “Development of an implicitly coupled elec-
tromechanical and electromagnetic transients simulator for
power systems,” Ph.D. dissertation, Illinois Institute of Tech-
nology, 2011.

[20] S. Abhyankar, B. Smith, H. Zhang, and A. Flueck, “Using
PETSc to develop scalable applications for next-generation
power grid,” in Proceedings of the 1st International Workshop
on High Performance Computing, Networking and Analytics
for the Power Grid. ACM, 2011.

[21] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandié,
“Moose: A parallel computational framework for coupled
systems of nonlinear equations,” Nuclear Engineering and
Design, vol. 239, no. 10, pp. 1768–1778, 2009.

[22] M. A. Heroux and J. M. Willenbring, “Trilinos users guide,”
Sandia National Laboratories, Tech. Rep. SAND2003-2952,
2003.

[23] A. Logg, K. Ølgaard, M. Rognes, G. Wells, J. Jansson,
R. Kirby, M. Knepley, D. Lindbo, and O. Skavhaug, “The
FEniCS project,” 2011, a continually updated technical report.
http://fenicsproject.org.

[24] P. Brune, M. Knepley, B. Smith, and X. Tu, “Composing
scalable nonlinear solvers,” Argonne National Laboratory,
Preprint ANL/MCS-P2010-0112, 2012.

[25] P. Hovland, B. Norris, and B. Smith, “Making automatic
differentiation truly automatic: Coupling PETSc with ADIC,”
Future Generation Computer Systems, vol. 21, no. 8, pp.
1426–1438, 2005.

[26] W. D. Gropp, L. C. McInnes, and B. F. Smith, “Scalable
libraries for solving systems of nonlinear equations and
unconstrained minimization problems,” in Proceedings of the
Scalable Parallel Libraries Conference. Mississippi State
University: IEEE, 1995, pp. 60–67.

[27] B. F. Smith, P. Bjørstad, and W. D. Gropp, Domain De-
composition: Parallel Multilevel Methods for Elliptic Partial
Differential Equations. Cambridge University Press, 1996.

[28] M. Murphy, G. Golub, and A. Wathen, “A note on pre-
conditioning for indefinite linear systems,” SIAM Journal on
Scientific Computing, vol. 21, no. 6, pp. 1969–1972, 2000.

[29] I. C. F. Ipsen, “A note on preconditioning nonsymmetric
matrices,” SIAM J. Sci. Comput., vol. 23, pp. 1050–1051,
2001.

[30] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tumi-
naro, “A taxonomy and comparison of parallel block multi-
level preconditioners for the incompressible Navier-Stokes
equations,” Journal of Computational Physics, vol. 227, no. 1,
pp. 1790–1808, 2008.

[31] D. Silvester, H. Elman, D. Kay, and A. Wathen, “Efficient
preconditioning of the linearized Navier-Stokes equations for
incompressible flow,” Journal of Computational and Applied
Mathematics, vol. 128, no. 1-2, pp. 261–279, 2001.

[32] H. Elman, “Preconditioning for the steady-state Navier-Stokes
equations with low viscosity,” SIAM Journal on Scientific
Computing, vol. 20, no. 4, pp. 1299–1316, 1999.

[33] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tu-
minaro, “Block preconditioners based on approximate com-
mutators,” SIAM Journal on Scientific Computing, vol. 27,
no. 5, pp. 1651–1668, 2006.

[34] H. Elman and R. Tuminaro, “Boundary conditions in ap-
proximate commutator preconditioners for the Navier-Stokes
equations,” Electronic Transactions on Numerical Analysis,
vol. 35, pp. 257–280, 2009.

[35] D. Kay and D. Loghin, “A Green’s function preconditioner for
the steady-state Navier-Stokes equations,” Oxford University
Computing Laboratory, Tech. Rep. 99/06, 1999.

[36] M. Bebendorf and W. Hackbusch, “Existence of H-matrix ap-
proximants to the inverse FE-matrix of elliptic operators with
L8-coefficients,” Numerische Mathematik, vol. 95, no. 1, pp.
1–28, 2003.

[37] W. Hackbusch, B. Khoromskij, and R. Kriemann, “Direct
Schur complement method by domain decomposition based
on H-matrix approximation,” Computing and Visualization in
Science, vol. 8, no. 3, pp. 179–188, 2005.

[38] L. Moresi, S. Quenette, V. Lemiale, C. Meriaux, B. Appelbe,
and H. Mühlhaus, “Computational approaches to studying
non-linear dynamics of the crust and mantle,” Physics of the
Earth and Planetary Interiors, vol. 163, no. 1-4, pp. 69–82,
2007.

[39] Y. Saad, “A flexible inner-outer preconditioned GMRES
algorithm,” SIAM Journal on Scientific Computing, vol. 14,
no. 2, pp. 461–469, 1993.

[40] J. Brown, “Computational methods for ice flow simulation,”
Ph.D. dissertation, ETH Zürich, 2011.

[41] N. Nachtigal, S. Reddy, and L. Trefethen, “How fast are
nonsymmetric matrix iterations?” SIAM Journal on Matrix
Analysis and Applications, vol. 13, p. 778, 1992.

[42] M. Embree, “How descriptive are GMRES convergence
bounds,” Oxford University Computing Laboratory, Tech.
Rep. 08, 1999.

[43] J. Brown, “Efficient nonlinear solvers for nodal high-order
finite elements in 3D,” Journal of Scientific Computing,
vol. 45, pp. 48–63, 2010.

[44] S. Eisenstat, H. Elman, and M. Schultz, “Variational itera-
tive methods for nonsymmetric systems of linear equations,”
SIAM Journal on Numerical Analysis, vol. 20, no. 2, pp. 345–
357, 1983.

[45] H. Elman, M. Mihajlovic, and D. Silvester, “Fast iterative
solvers for buoyancy driven flow problems,” Journal of Com-
putational Physics, vol. 230, no. 10, pp. 3900 – 3914, 2011.

[46] R. Falgout, “hypre Web page,” http://www.llnl.gov/CASC/
hypre.

http://ees.lanl.gov/pflotran/
http://ees.lanl.gov/pflotran/
http://fenicsproject.org
http://www.llnl.gov/CASC/hypre
http://www.llnl.gov/CASC/hypre

Government License. The submitted manuscript has been
created by UChicago Argonne , LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

	Introduction
	Composition of Linear Solvers
	The PETSc DM Object
	FieldSplit Preconditioner
	Numerical Examples
	Geodynamics: Variable-viscosity Stokes
	Ice sheet dynamics: Polythermal ice flow
	Materials science: Phase field models

	Conclusion
	References

